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Particle chaotic dynamics along a stochastic web is studied for three-dimensional Hamiltonian flow
with hexagonal symmetry in a plane. Two different classes of dynamical motion, obtained by different
values of a control parameter, and corresponding to normal and anomalous diffusion, have been con-
sidered and compared. It is shown that the anomalous transport can be characterized by powerlike
wings of the distribution function of displacement, flights which are similar to Lévy flights, approximate
trappings of orbits near the boundary layer of islands, and anomalous behavior of the moments of a dis-
tribution function considered as a function of the number of the moment. The main result is related to
the self-similar properties of different topological and dynamical characteristics of the particle motion.
This self-similarity appears in the Weierstrass-like random-walk process that is responsible for the anom-
alous transport exponent in the mean-moment dependence on ¢. This exponent can be expressed as a ra-
tio of fractal dimensions of space and time sets in the Weierstrass-like process. An explicit form for the
expression of the anomalous transport exponent through the local topological properties of orbits has
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been given.

PACS number(s): 05.45.+b, 47.52.+j, 05.60.+w, 47.53.+n

I. INTRODUCTION

When speaking about dynamical chaos, one has in
mind that a particle exhibits some kind of random
motion, so that the particle orbit can be represented by a
random process. It is a major problem in the theory of
chaos to specify this process. In early studies of chaotic
systems it became clear that a Gaussian process could be
considered as a fairly good approximation for many cases
[1]. At the same time it was clear that chaotic motion of
generic Hamiltonian systems is not ergodic and islands of
stability form a finite measure fractal set in the phase
space of a system. The islands induce more or less strong
correlation effects and change the law of particle diffusion
[2-7] (a review of many results can be found in [7]). One
can conclude from these results that the stochastic pro-
cess which describes a particle orbit is sensitive to the to-
pology of the phase space and in particular to such fine
topological objects as cantori [8,9,6]. It was shown in the
works cited that particle transport for the standard map
(or for a map similar to it) can be described by the
diffusion equation of the Fokker-Planck-Kolmogorov
type with a nontrivial diffusion coefficient D (K) which
depends on the critical parameter K characterizing the
map. The so-called standard map describes a model of a
perturbed rotator and the parameter K characterizes a
level of perturbation. There is a strong chaos for K >>1
and the diffusion process is close to Gaussian. Diffusion
occurs for K >K_,=0.914. .. and there are fairly strong
oscillations of D (K) for K —K, not too large. The varia-
tion of D (K) exemplifies the dependence of the diffusion
process on the measure of islands, which is of the order
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1/K’, with some exponent r of order one.

Hamiltonian chaos allows a wide variation of topology
in phase space and correspondingly, a wide variation in
transport possibilities can be imagined between the slow
process such as Arnold diffusion [10] and the normal
diffusion of Gaussian-like process. In many Hamiltonian
systems of interest with chaotic orbits, the system is close
to an integrable one. In such Hamiltonian systems chaos
is “weak,” which means that chaotic orbits are concen-
trated in small measure domains of phase space. Topo-
logical construction of the domains of weak chaos is very
complicated and notions of “web” or ‘stochastic web”
are often used to describe these domains. The discovery
of the stochastic webs of different symmetries in low-
dimensional Hamiltonian systems [11-13] shows that the
problem of particle transport is more serious and more
important in applications than one might have otherwise
thought. It was shown in a set of publications [14-17]
that transport through stochastic webs could be intrinsi-
cally non-Gaussian, i.e., anomalous. Such a transport
can be characterized by a non-Gaussian time dependence
of the moments of the particle displacement R,

(R2)~1t7, t—>o , (1.1)

with y71. It can be superdiffusion (1 <y <2) [15-17] or
subdiffusion (0<y <1) [16,18]. Preliminary investiga-
tions of anomalous transport phenomena display the ex-
istence of long ballistic modes in particle orbits [14—17]
for which y is close to 2, and even superlong modes
[16,19]. The portions of orbits with almost regular (i.e.,
almost nonchaotic) propagation were called flights and
jets.
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The expression (1.1), while describing the transport
properties, arises from large scale (long-time) asymptot-
ics. At the same time (1.1) can be considered to be a re-
sult of some small scale, i.e., local, properties of the sys-
tem. From the dynamical point of view their origin
could be fractal local properties of scattering [20],
renormalization-group properties of resonances [21,22],
nontrivial statistics of the Poincaré recurrences [23], or
Hamiltonian intermittency (see examples in [13]). It was
shown in [15,17] that the occurrence of flights depends
on the topological properties of the system’s phase por-
trait, namely on its symmetry and on the closeness of the
system’s parameters to their bifurcation values.

For several reasons it was supposed in [14-17] that
anomalous transport (1.1) with ¥1 correspond to the
Lévy-flight-like random process [24]. The first reason
was strictly formal: Lévy flights are described by the dis-
tribution function p,(x) of probability to have displace-
ment x after the nth step of random walk, which has the
asymptotic form

pn(x)~constXn/x't% n—ow (1.2)

where 0 <a <2. The power tail indicates the absence of a
characteristic size, the intermittency or dominance of
large length steps, and the self-similar property of the
moments of p,. It was mentioned in [14-17,19] that par-
ticle orbits can be trapped in regions in the vicinity of is-
lands of stability. Such trappings create long flights in
the perpendicular direction to the islands, and such
flights may be responsible for the powerlike tails in the
distribution function. The second reason was based on
the results of works [25-27], in which the connection of
a to the fractal dimension of a space of the particle ran-
dom walk was established and a Lévy process was used to
describe the Richardson law for self-similar particle
diffusion in a turbulent fluid. The third reason was based
on the fractal properties of the islands’ topological distri-
bution in the phase space of a particle. If trappings or
flights are significant for a particle orbit, then the fractal
structure of the areas of trappings should induce a self-
similar asymptotic form for the particle’s displacement
distribution function. The fourth reason was well ela-
borated for Lévy-like processes, the idea of fractal time
[29,30] which gives a freedom to operate with a dynami-
cal orbit with fractal structure in both space and time.
Corresponding phenomenological kinetic equations were
proposed in [16] (integral equations) and [31] (fractional
Fokker-Planck-Kolmogorov  equations). All  these
reasons may be considered as qualitative arguments
which might lead one to find the correct form for the sto-
chastic process of a particle wandering in dynamical
chaos. The only observations that seem fairly reliable are
the strong correlations between trappings near the
boundary layer of an island and the occurrence of flights
[17,19,28], and dependence of the exponent ¥ in (1.1) on a
control parameter of the system, i.e., on the topology of
the system’s phase space [15].

This article is devoted to a detailed study of properties
of the wandering process in the case of anomalous trans-
port for an appropriate model of particle dynamics. The
model describes a Lagrangian particle advection in a
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three-dimensional stationary flow with hexagonal plane
symmetry. The flow was introduced in [12] (see also
[13,14]) as a generalization of the Arnold-Beltrami-
Childress (ABC) flow [32]. The great interest in such
models originated with studies of the fast magnetic
dynamo problem and of certain problems in convection
(see [13]). To simulate anomalous transport of the form
(1.1) and presumably with distribution (1.2) one needs
long-term computations with high accuracy and large
statistics of orbits. The model of hexagonal symmetry
flow is appropriate because of its clear and well observ-
able anomalous transport properties (see discussion in
Sec. II). Our aim was to demonstrate the existence of
different nontrivial features in a particle statistics rather
than to carry out a detailed study, a much more difficult
and lengthy problem. We believe that our results make
obvious the proposition that Hamiltonian dynamical
chaos is generically non-Gaussian. On occasion, the
asymptotic properties of the dynamical chaos are close to
the Lévy-like process with self-similarity. However, our
concluding discussion shows the origin of more compli-
cated probabalistic structure than a simple Lévy process
for dynamical chaos.

In a simplified form the main result can be formulated
as a possibility to predict in an explicit form the transport
exponent y in Eq. (1.1) or, better, the exponent p in the
equation

(|R|Y~tF, t—>o , (1.3)

from the local topological properties of the phase space
of a system. Specifically u=/3/a, where B is responsible
for the time-behavior process near islands and is equal to
the fractal dimension of this process, and « is responsible
for the phase-space structure of orbits near islands and is
simply connected to the fractal dimension of the islands-
around-islands set. It is shown that 8 can be expressed
through the Lyapunov exponents and a can be expressed
through the island areas. Under some restrictions one
can expect that a and B are universal constants and
therefore there are universal anomalous transport ex-
ponents.

II. DESCRIPTION OF THE MODEL

We consider the motion of a Lagrangian particle in a
stationary divergence-free velocity field v=v(x,y,z), div
v=0. Its motion is governed by the simple equation

dr

—=v(r R

ar (r)
and its orbits coincide with streamlines of the vector field
v. Our flow field also satisfies the Beltrami property

2.1

v=curl v, (2.2)

so that if one replaces the velocity field v by the magnetic
field B then (2.1) characterizes the magnetic-field lines
and (2.2) shows that the magnetic field is force free. In
[12] a general g-fold symmetric Beltrami field v was con-
structed (the so-called Q flow), which gives the ABC flow
for ¢ =4 and hexagonal flow for ¢ =3 or 6. For the latter
case we have
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x+V3 x—V73
v= |- +esinz, o +ecosz,y |, 2.3) Y= cosx +eosT *cos 2 2 @4
dy ox
Equations (2.3) and (2.4) determine a three-dimensional
where € is a parameter of the system and ¥ is a two-  periodic flow in space for which solutions of Eq. (2.1) can
dimensional stream function with hexagonal symmetry in be chaotic.
the (x,y) plane, It was shown in [12,13] that for arbitrary €70 there
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FIG. 1. Poincaré sections z =0 (mod2w) of the particle orbit in the hexagonal flow for two values of e: in (a), (b), and (c) €=2.3
and in (d) €=2.9. (a) displays two periods in y and one period in x; there are several regular orbits and one chaotic orbit, which un-
dergoes propagation along z in both positive and negative directions. (b) and (c) display one period in x and one period in y for the
same chaotic orbit as in (a) but for the (b) positive or (c) negative directions of propagation only. (d) is the same as in (a) but for
€=2.9.
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exists a connected infinite area of chaotic motion, called a
stochastic web. The web looks like a connected net of
channels inside of which particle orbits are chaotic. The
characteristic value of the channel’s diameter can be con-
sidered as the web width which is of order € for small €
and of order 1 for e> 1.

Figure 1(a) shows a section of the stochastic web for
z =const. A full stochastic web section comes from the
doubly periodic continuation of the plot. Instead of
three-dimensional imaging of the web it is convenient to
look at its Poincaré sections for z =const (mod27w). The
model (2.1) has a Hamiltonian formulation for arbitrary
1 [13], but for our purposes the use of noncanonical vari-
ables (x,y) is satisfactory and simpler. Figures 1(b) and
1(c) present two maps: (b) displays an orbit inside the
web which cross the plane z =0 in the positive z direc-
tion, and (c) displays the crossings in the negative z direc-
tion. Their superposition and periodic extension gives
the web of Fig. 1(a). Figure 1(d) presents the Poincaré
section of the stochastic web similar to Fig. 1(a) but for a
different value of €. The difference between Fig. 1(a) and
Fig. 1(d) is in their topological structure. Two kinds of
islands present in Fig. 1(a) are absent in Fig. 1(d), and it is
just these islands which are responsible for long flights.

The orbit of a Lagrangian (passive) particle is a solu-
tion of the Eq. (2.1) r=r(¢;r,) satisfying the initial condi-
tion ry=r(0;ry). At the same time r(z,1y) represents the
streamline which starts from a point r,. We refer to the
(x,y) plane as the phase plane even though x and y are
not canonically conjugate, since there exists transforma-
tion of parameter ¢ — T,

dr=v,dt =vydt , (2.5)

for which x and y are canonically conjugate with an ap-
propriate Hamiltonian [12]. The transformation (2.5) is
singular at some points and must be used carefully at
these points, but we do not need to use any of its proper-
ties.

Although the full phase portrait of the system (2.1) and
(2.2) must be represented on a three-dimensional torus
[see Fig. 1(a)], we examine the Poincaré plot of the orbit
in the (x,y) plane corresponding to z =0 (mod27). We
define the displacements of a particle during a time ¢ as

X=x(t)—xy, Y()=y(t)—y, . (2.6)

We also introduce the probability distribution function of
the position coordinates p(x,y,t) with the normalizing
condition

fp(x,y,t)dx dy=1,

and we introduce the moments of p (x,y,t) corresponding
to (2.6),

2.7

(1x1™y= [ lx (1) =xo|"p (x,,)dx dy ,

(2.8)

<|Y|’">=f|y(t)~y0|’”p(x,y,t)dx dy .
The values of (|X|™) and (|Y|™) for large m depend
essentially on the asymptotic behavior of p(x,y,t) for
large x and y. Gaussian or Gaussian-like distributions
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have exponentially decaying tails for x,y— o which
render the expressions (2.8) integrable for any order m of
the moments. In the case of anomalous transport the tail
in p(x,y,t) for large x,y is powerlike, leading to a large
contribution from the tail to the integrals (2.8) and a
strong growth of the moments for large m, and finally
nonexistence of the moments for m large enough.
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FIG. 2. A Lévy-like flight in y for e=2.3 shown for different
time intervals (a), (b), and (c). The Poincaré section (d) shows an
almost periodic structure for different time intervals in (a), (b),
and (c) and an escape from the flight in (c) after a very long
time. All dots in (d) belong to the same flight: the dark part of
the plot corresponds to the flight while all other dots are related
to the part of the orbit which corresponds to the escape from
the flight.
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FIG. 3. Exponent of diffusion vs control parameter €. Ar-
rows indicate €=2.3 and 2.9, for anomalous and normal
diffusion, respectively.

The possibility of the anomalous (non-Gaussian) situa-
tion dictates the way to study the orbits (solutions) of the
system (2.1), (2.3), and (2.4). It was shown in [15,19] that
chaotic orbits can have almost regular parts (flights)
when a particle sticks fast in a boundary layer of islands.
An example of a flight is shown in Fig. 2. The flight ap-
pears to be propagation along y direction [Figs.
2(a)-2(c)]. The same flight can be displayed on the
three-dimensional torus due to the periodicity of the hex-
agonal flow model [see Egs. (2.3) and (2.4)]. The two-
periodic closure in the x direction in Fig. 2(d) shows
clearly through the darker regions the stickiness of the
flight to islands’ boundaries. '

Generic Hamiltonian systems with chaotic dynamics
may have islands in the phase space and consequently
may have flights. Nevertheless the statistics of the flights
depends on various control parameters. One can intro-
duce an exponent u [see also (1.3)],

(R)=constXt* (t—o), (2.9)
where R =(X?+Y?)!/2, and consider the dependence
p=u(e) for the model used here, Fig. 3 [15]. Arrows
show two values of €=2.3 (anomalous transport) and
€=2.9 (normal diffusion), both of which we consider
below. The advantage of the present model is existence
of both normal and abnormal transport; we can use the
plot in Fig. 3 to choose between them and compare them.

III. NUMERICAL SIMULATION DESCRIPTION

We have mentioned in the introductory part that it is
desirable to have high accuracy simulation in order to get
good statistics of the long flights. We employ a sixth-
order Taylor expansion of the orbit to calculate time evo-
lution of x,y,z for each step At. The formulas for
higher-order time derivative were computed with a sym-
bolic algebra program PFSA [33].

The time step At was selected by choosing as large a
value as possible which gives good accuracy. First, we
defined a standard test evolution, starting at (xy,y,zq)
and running for total time ¢ =20. This standard was
computed with quadruple precision with both the above

Taylor expansion method and with a fourth-order
Runge-Kutta method. The sixth-order method attained
17-decimal-place accuracy with At =0.000312, and the
Runge-Kutta method attained 11-decimal-place accuracy
with this same At.

Using the accurate answer we did several double pre-
cision computations of x,y,z at ¢t =20 using the Taylor
expansion method with many values of Az, then a value
of 0.01 was selected, which gives an accuracy of 8
decimal places. With the Runge-Kutta method At
=0.001 25 is needed to get the same accuracy. The run-
ning time with the Taylor method and Az =0.01 is 0.67
seconds, and with the Runge-Kutta method with
Az =0.001 25 the time is 2.13 seconds. The correspond-
ing accuracy with the Runge-Kutta method with the
selected At =0.01 is 5 decimal places.

All the comparisons between different methods and
values of At were computed for a typical chaotic orbit
with €=2.3 (see Fig. 1).

IV. ANOMALOUS DISTRIBUTION FUNCTION

We introduce the distribution functions P(x,t,) or
P(y,ty), which are calculated as follows. Let At be the
time length of a step and Ax or Ay be sizes of bins along x
or y directions. Then the normalized number of visits in
a bin with coordinate x in the interval (x,x + Ax) during
a time interval (0,¢4) is P(x,ty). P(y,ty) is defined simi-
larly. Clearly P(x,t,) and P(y,t,) are histograms, de-
pending on the choice of Ax, Ay, and At.

Figure 4 presents two distribution functions calculated
by averaging the distribution functions of 400 different
orbits. Plots in Figs. 4(a) and 4(b) correspond to €=2.9.
The dashed curve is the best approximating Gaussian.
The special plot of the wings of the distribution function
[Figs. 4(c) and 4(d)] confirm their Gaussian form at least
for large time asymptotics, since log;oP(x,t,) are linear
functions of x? or y?, respectively, except for very large
values of x,y for which there are large fluctuations due to
the finite value of ¢,. Clearly, Fig. 4 indicates normal
diffusion. Nevertheless, the behavior of P(x,t,) and
P(y,ty) for small x,y displays sharp peaks which are
non-Gaussian. We discuss this feature further in Sec. IX.

A different situation occurs for e=2.3 for which anom-
alous transport occurs. Fluctuations are stronger in this
case and averaging was performed over 620 orbits with
t,=10* for each. The corresponding distributions
P(x,ty) and P(y,t,) are shown in Fig. 5. The wings of
the distribution functions have power-law dependence, as
shown by Fig. 6, in which we present a plot of log,P
versus the logarithm of the coordinate and a plot of
log,oP versus the square of the coordinate for compar-
ison. A rough estimate of the exponents

a

Px,t)~1/x %, P(pto)~1/p @ @.1)
gives
a,~a,~3. (4.2)

There is not enough accuracy in our computations to
identify anisotropy in the x and y directions or to obtain
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FIG. 4. Normalized distribution functions (a) P(x,¢,) and (b)
P(y,t,) for the case of €=2.9. (c) LogoP(x,t,) vs x? and (d)
logoP (y,t0) vs y? for large ¢, exhibit the Gaussian character of
P. The large fluctuations at the end of the plots are due to the
lack of statistics at large distances.
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FIG. 5. The same as in Figs. 4(a) and 4(b) but for the anoma-
lous diffusion case €=2.3. The dashed curve is the correspond-
ing Gaussian with the same standard deviation and mean.
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FIG. 6. An analysis of the distribution tails for the anoma-
lous diffusion case €=2.3. (a) and (b) exhibit plots of log;oP vs
x2, 2. (c) and (d) exhibit plots of log;oP vs logox, logqy.

a, or a, accurately. An important feature of the distri-
bution function in the anomalous case of €=2.3 can be
seen if we plot P(x,t,) and P(y,t,) after averaging over
only 100 orbits and with higher resolution (small bin size)
(Fig. 7). There are many peaks and each peak corre-
sponds to a different flight. It is just these flights which
cause the orbits to stick fast at some coordinates, enor-
mously enhancing fluctuations and changing asymptotics
for the large coordinate values.

Another way to find anomalous properties of the distri-
bution functions P(x,t,) and P(y,t,) is to look at the
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FIG. 7. Nonsmoothed histogram of the distribution func-
tions in Fig. 5 for the case of anomalous diffusion.
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moments (2.8) and the dependence of the moments on the
moment number m. Due to the powerlike asymptotic
law (4.1) the moments grow much faster as m increases
than the growth for the Gaussian form of the distribution
function. Results of the corresponding calculations are
given in Fig. 8. All curves represent log,,{|X|™) vs m
for the interval of m (0,10). The curve 1 corresponds to
the distribution P(x,t,) in Fig. 4(a) for €=2.9, which we
supposed to be close to the Gaussian for large x. The
dashed curve 2 corresponds to the Gaussian approxima-
tion for the same P(x,t;,) [see the corresponding dashed
curve in Fig. 4(a)]. The Gaussian distribution has been
adjusted by taking equal second-order moments for
Gaussian distribution and for the calculated one. Within
the plotted range the curves 1 and 2 are very close. The
curve 3 corresponds to the anomalous distribution
P(x,ty) in Fig. 5(a) for €=2.3. There is an obvious
strong discrepancy between curves 1 (or 2) and 3, a result
of powerlike wings for a distribution function exhibiting
anomalous diffusion.

Some additional information about the role of flights in
creating powerlike tails of the distribution function ap-
pears if one reduces the accuracy of computations. Er-
rors from roundoff and lack of precision may generate ad-
ditional randomness in the dynamics and may, corre-
spondingly, in its turn, reduce the length of flights.
Shorter flights reduce the powerlike dependence of the
tail of the distribution function and reduces the growth of
the higher moments as m increases. Curve 3 in Fig. 8
corresponds to the sixth-order computations after averag-
ing over 620 orbits. Curve 4 in Fig. 8 corresponds to the
same initial conditions but with orbits computed by the
fourth-order Runge-Kutta method in single precision,
and is closer to the normal distribution. This example
demonstrates, in particular, the importance of computa-
tional accuracy for the study of anomalous transport.

10.0
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FIG. 8. Plot of the dependence of the moment of order m on
m. Curve 1 corresponds to €=2.9; curve 2 is for a Gaussian ap-
proximation of the curve 1; curve 3 is for the anomalous
diffusion case €=2.3; and curve 4 is for a low precision compu-
tation of the previous case.
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V. SELF-SIMILARITY OF TRANSPORT

The picture of the origination of flights, described
above, is influenced by the increasingly fine structure of
the island patterns in phase space and its specific proper-
ties. It was mentioned in [34] that in the neighborhood of
a generic periodic orbit there are satellite elliptic orbits of
smaller sizes and so forth. More precisely these satellite
elliptic orbits are ordered forming a chain of islands
around the main island [35]. This situation is known as
“islands around islands” [36]. Its main feature is
self-similarity, which gives a possibility to apply
renormalization-group methods [36,37]. To make expli-
cit the islands around islands picture for our problem we
present a corresponding simulation in Fig. 9 where four
generations of a parent island are shown. A dark region
on the boundary strip of an island is the result of flights.

The method of class renormalization for islands around
islands was proposed in [36]. Let us consider equations
of motion (2.1) and their solution in the form

x =x(2;X0,Y0,20), Y =y (2;%0,¥0,20)

where (x,,y,) are “‘initial conditions” at z =z,. Then
one can introduce the mapping T, which is a shift opera-
tor generated by the solution of (2.1) corresponding to
two consequent crossings of the plane z =const (mod2).
A periodic orbit with a period ¢, /q; (q;,q; are integers) is
a fixed point of T, By changing some parameter of the
mapping T one can come to the first appearance of an is-
lands chain encircling the periodic orbit of the frequency

q;/q;. Let the new frequency of smaller islands be
7.9
4= S S
, =i
y f? N'
§ -
: e
NI 5(_(‘
6.60
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.52 L 0.445 L
6.95 x 7.20 7.147

7.177

0.456 = 0.456415

0.451

= 0.45375
7.150 x 7.155 7.1512 x 7.1516

() (e)

FIG. 9. Poincaré section for an orbit displays (a) the main is-
land and (b)—(e) islands of four generations.



1690 G. M. ZASLAVSKY, D. STEVENS, AND H. WEITZNER 48

qi+1/4;+,- We define the starting periodic orbit to be of
order i, the next generated orbit is of order (i +1), etc.
Let AI, be the area of an island of order s. Com-
puter simulation for a model of two-dimensional area-
preserving mapping suggests the self-similarity [36]

AI,~C,(AT,)"*, (5.1)

with two appropriate constants C; and AI,. It was pro-
posed in [36] that these constants are universal under
some constrictions. Here we would like to go farther and
introduce additional, related self-similarities, namely for
the period of the last invariant curve that forms the
boundary of the order —s island,

T,~C.T§, (5.2)

and for the Lyapunov exponents in the vicinity of the or-
der —s island,

o,~C,ay (Tg<1), (5.3)
where
o= lim Lin[d(1)/d(0)] (5.4)
t—>,d(0)—0 I

and d (¢) is separation at the time instant ¢ of two initially
close orbits.

Table I confirms the statements of the self-similarities
(5.1)=(5.3). The second column gives the value of g, for
the resonance of the order s. All other columns definitely
show the exponential law of the correspondent value
dependence on s. Column with n; indicates the total
number of order —s islands. Their full area is

8I,=n Al . (5.5)

Area of islands A, period Ty, and growth times 7, are
taken in the same units as in the initial equations (2.3)
and (2.4). The accuracy of the Lyapunov exponents o is
fairly low as extensive computations must be done to ob-
tain the necessary average over different initial condi-
tions. Nevertheless even such nonaveraged exponents
display the exponential dependence on s. In particular
the island area scaling parameter AT,~ 1072 and is close
to the one considered in [36].

The complex island structures just described influence
the behavior of a particle trapped in the area in the vicin-
ity of the islands boundary. A Markov-tree model was
proposed in [38,39] to describe the transport or survival
probability in such systems. In the next section another

model will be proposed to describe the non-Gaussian dis-
tribution of the particle displacements.

VI. SELF-SIMILAR RANDOM WALKS

A formal description for the chaotic motion with
flights is based on two conjectures. The first one is that
an orbit may be conditionally determined based on the
“regular” (short-scaled) parts and on the flights (long-
scaled parts). A prevalence of one over another part
defines a character of the long-time behavior asymptotics.
The second conjecture is that the long-scaled part of
flights has self-similar properties which determine the
long-range asymptotics. Both of these conjectures are
well confirmed by the previous simulation data.

In a simplified form the kinetic description can be con-
sidered as a sequence of jumps with self-similar distances.
Time intervals between jumps are self-similar, too. More
specification is necessary to get a formal equation.

The process when flights predominate can be described
in a form of special cluster construction. For each order
—s islands introduce order —s boundary layers. A parti-
cle rotates in such a layer with a weak instability, i.e.,
corresponding to the very small Lyapunov exponent o
and to the large escape time from the boundary layer.
After escaping from one boundary layer of the order —s
the particle can be trapped into another order —s’ layer
and so on. This process can be expressed also as passing
through the turnstiles of cantori [36,38,39]. After switch-
ing from one layer to another the particle changes its ac-
tion from the value 8I; to the value 8I;,. One can do
coarse graining of the part of the motion which belongs
to slow crossing of a boundary layer, and consider only
the time 1/0,; which is necessary to do this, and the
“jump” AI; of the action. A consecutive set of values
{AI,0} defines a flight cluster. Now the particle orbit
can be described as a random walk along the flight clus-
ter. Such a random walk is similar to the Weierstrass
random walk [40,27], which is closely related to the Lévy
flight process.

Consider the probability density p(£) to do a step
which changes the action of a particle by &, i.e., the ac-
tion I becomes equal to I £ after the step. The step may
have an arbitrary value of S, so that

E=8I,=C}(8I,)"%, 8I,=gAI,, (6.1)

corresponding to (5.5) and (5.1), and g is some average
value of g, (see Table I). The probability p (£) to do any

TABLE 1. Values of the last invariant curve period T, inverse Lyapunov exponent 7, and area of is-
land 81, for different orders s =0, 1, 2, 3, 4 of islands. Column n, displays number of islands (i.e., order
of resonances) in a form of the product where the last multiplier corresponds to the number of the last
subislands set. Ratios T, /T, 7,+,/7,, and 8], ,/81; are given for convenience.

S qs T: Ts+l/Ts 7'5‘__1/0'5 7S+I/Ts SIS 8Is+1/815 N

0 1 65 4.8x10° 1.2 1

1 11 347 5.37 12X 10° 2.5 0.039 0.032 1X11

2 6 2002 5.76 45x10° 3.75 0.0071 0.182 1X11X6

3 8 13236 6.61 180X 10° 4.0 0.00050 0.07 IX11X6X38
4 7 82402 6.23 ~360X 10° 2.0 0.000032 0.064 IX11X6X8X7
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step of the value £ (i.e., to have changing of the action of
the value £) in a unit time is

p(&)=constX Y p {8(E—B8I)+8(5+8I)} , (6.2)
where p, is the probability density to do a step of the
value +81,

1, £=0
8(5)= 10, &0,

and the constant is determined by the normalization con-
dition

>pE)=1, (6.3)
§

where the sum over & runs over all available jumps {8I}.
The crucial point in finding p, is to use
1

pS~Tln[I‘s(t)/I‘s(0)]=as ) (6.4)
where I'((¢) is the phase volume of a dynamical system in
the order —s boundary layer, if initially taken I';(0) [41].
A simple meaning of the (6.4) is that the probability to
cross a stochastic layer, i.e., “to make a step” during the
unit time, is proportional to the inverse time of mixing in
the stochastic layer. This time 7,=1/0 and can be tak-

en from the corresponding column of Table I, and from
(5.3),

ps,=const XT} .

It was mentioned above that computations of the aver-
age Lyapunov exponents is very difficult and accuracy of
o, in Table I is very low. It is simpler to use a period T
of the last invariant curve instead of the 1/0,. Then one
has from (5.2),

ps=Cr/T} . (6.5)

The motivation to replace (6.4) by (6.5) is fairly clear al-
though the justification is not trivial. Let us fix con-
sideration on the order (s —1) island. Then some
effective perturbation creates a resonance of order s and
correspondent set of g, subislands. Such a perturbation
has period T,. Just this perturbation is responsible for
the occurrence of the corresponding boundary layer,
which can be considered as a stochastic layer induced by
the perturbation. Moreover, for all known analytical ex-
amples the Lyapunov exponent in the stochastic layer is
proportional to T, (see many examples in [13]), i.e.,

o;=const/T , (6.6)

where the const is some number. This result is fairly nat-
ural because there are no other physical time scales
which could characterize the island boundary layer.
Hence the assumption is that the const in (6.6) does not
depend on s strongly and this statement can be verified
immediately from the correspondent columns of Table I
which shows that there is a factor of about 2 in the rela-
tion

TS+I/TS~2TS+1/TS .
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The origin of the factor 2 may arise from the averaging
procedure which must be done to get the actual
Lyapunov exponents o, and which was not performed in
our computations.

After substitution of (6.5) to (6.2) we get

pm=22L3 a = (8ln—b"+8(n+5] ,

with notations

n=£&/C;, a=T,, b=38I,. (6.7)

Now the problem has been reduced to the so-called
Weierstrass random walk [40,27], and corresponding re-
sults can be used from [40]. The characteristic function

of p(n)is
_a—1 g

p(K)=3 e’*p (n) » > a "cos(b"k) .
n n=0

(6.8)

Expression (6.8) for p (k) has the form of the Weierstrass
function, which explains the notion “Weierstrass random
walk.” From Table I it is seen that @ >1 and 1/uy <1,

where
Wy =Inb /Ina =In(81,)/InT, . (6.9)

These conditions imply [42] that p (k) is an everywhere

continuous nowhere differential function. For small
values of k, p (k) satisfies
p(k)—p(O)=0(lk|'*"), (6.10)

with the same exponent py, and with p (0)=1.

Our aim now is to make a connection between the self-
similarity described above and the asymptotics for the
mean displacement (R ) in (2.9) or, more precisely, to
find p in (2.9) as a function of .

VII. RENORMALIZATION APPROACH

The special character of the Weierstrass function p (k)
permits the renormalization approach [27]. From (6.8) it
follows that p (k) satisfies

a—1

p(k)=%p(bk)+ cosk . (7.1)
Using (7.1) and the Poisson summation formula or an al-
ternative transformation (see [40,43] and generalization
for the higher-dimensional case [44]), it was shown that

p (k) may be represented in the form
p(k)=p,(k)+p,k),

where p, (k) is analytic in the neighborhood of k£ =0, and
p,(k) is singular at kK =0 and

p =1kl k), (7.2)

where Q (k) is periodic in Ink with period Inb. There ex-
ist explicit expressions for p,(k) and Q (k) which, for
simplicity, we do not present here. Instead, a simplified
derivation of the transport law will be given. The asymp-
totic behavior kK —0 just corresponds to the asymptotic
behavior 77— o0, which is of interest to get the transport.
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Let us return to the expression (6.6) for the probability
density p (77) to make a step of the length 1. The proba-
bility density P,(7) to have the action n on the nth step
satisfies the Markov equation

Pyi(m= [ pa—m)P, (' )d’ . (7.3)
By extracting P, (7) from the both sides of (7.3) one has
AP, (9)=P, 1 (n)—P,(7)
=7 tp=w)=8n—m)}P,(n)dm’,  (1.4)

where 8(n—mn') is now the ordinary Dirac & function. In-
troduce the k transform,

P,(k)= [e™P, (n)dn ,

pto=[e™p(n)dn ,

where for simplicity the last expression will be used in-
stead of the discrete transform (6.8). Then (7.4) and (7.5)
yield

AP, (K)=[p(k)—1]P,(k) . (7.6)

(7.5)

Using (6.10) and the property for p(0)=1 [see also
(7.1) and (7.2)], we rewrite equation (7.6) in the form

AP, (k)=constX |k|' " P (k), k—0. 7.7

We now pass to the case of n large so that AP, /At can be
replaced by the time derivative 0P /3t if At is one step
time interval and n is associated with a continuous time.
Then

%|k|"”“Wp(k,t)zconstxp(k,t) ,

where the dependence on ¢ is shown instead of the index
n, or

%fdk e~ k| T VMV P (k,t)=const X P (n,1) . (1.8)

Equations (7.7) or (7.8) are adequate to obtain the final

answer on the asymptotic behavior of the particle trans-

port. Using the asymptotic representation for 7— c and
performing integration over 1 we find

_a_ Vpy
ot {n )

=const

or

(nl/#W>=const><t . (7.9)

The formulas (7.9) give the necessary asymptotic
behavior for t — o, which also can be rewritten in the
form

(n)=const X "% (7.10)

if the scaling law is used. The scaling law comes from the
general expression (7.7) and had its origin in the self-
similar structure of the Weierstrass random walk (7.1).
The final step can be carried out if we recall that 7 is
an action and therefore 7~ R? where R is a particle dis-

placement, so that from (7.10)

(R) =const X """* .

(7.11)
Comparing (7.11) to (2.9) one gets
L=ty , (7.12)
or from (6.9)
u=In(81y)/2InT, . (7.13)

Using Table I we can put some appropriate values for
T,~6.2 and for 8I,~14. Then (7.13) gives u~0.72
which is in good agreement with computations (see Fig.
3).

The main significance of the result (7.13) is that the ex-
ponent u in the transport formulas (7.11) or (2.9) can be
expressed through the local constants of the particle dy-
namics. One can expect the constant u to be as universal
as the constants 81, and T,. We hope to come back to
this issue elsewhere.

VIII. SPACE-TIME SCALES AND ERGODICITY

It was mentioned in [16] that existence of flights and
self-similarity in particle dynamics can create serious
difficulties in using the ergodic theorem. Here we can
discuss this problem in more detail. A simple form of the
ergodic theorem is the equality of the time and phase-
space averages:

lim %fotf(x(t))dt =(fx () =(fxON)=F, ,
8.1)

where x (¢) is set of all dynamical variables, f is integra-
ble function, and angular brackets { ) mean averaging
with invariant measure over the phase volume of a sys-
tem.

The usual way to observe the property (8.1) is to find
the time average and the phase average and to compare
them. Phase averaging can be performed by observing,
say, N orbits of the time extent ¢, each. One can expect
that if

Nty=t, (8.2)

and ¢ is fairly large, then the results for all three cases in
(8.1) will be approximately the same. The last case in
(8.1) corresponds to the only one orbit which can be con-
sidered either as N, pieces of the time extent ¢ N, Oras N,

pieces of the time extent tN,- Self-similar transport raises

new problems.

The questions are what is the time scale ¢, after which
the left-hand side limit in (8.1) is sufficiently close to f,
and what is the sufficient number of orbits N, that the
phase-space averaging over the N, orbits is close to f,?
If Ny and ¢, are known, then one can put ¢ =t in (8.2)
and consider different possibilities with N = N,. This
scheme works fairly well if there is a good mixing proper-
ty. In the case of the self-similar transport, the charac-
teristic time ¢, for the time average can exceed any
reasonable computational time and the scheme (8.2) does
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FIG. 10. Example of the displacements along x and y distri-
bution function for one orbit of ¢ =10% steps (+=10°) and
€=2.9.

not work. Unfortunately, from the point of view of the
averaging, one long orbit of the time extent ¢, divided into
N pieces, does not represent the same as averaging over N
arbitrary orbits of the time extent ¢ /N. Figure 10 shows
the histogram of displacements for one orbit in the case
of normal transport (u=1) with ¢ = 108 steps of compu-
tations or ¢ =10° in the units in which the differential
equations are written. Clearly even in this case long
flights affect the distribution of displacements. The pic-
ture corresponds to the state which is far from the equi-
librium whereas for 100 orbits of the time extent 10* one
can get a picture similar to Figs. 4(a) and 4(b). This ex-
plains, in particular, how important the accuracy of com-
putations is for the cases with flights, because errors of
the roundoff and discretizations can influence the ex-
ponent in transport or the character of the distribution
function. Absence of the characteristic time and space
scales enhances this effect for a self-similar transport.

IX. FLIGHTS AND DISTRIBUTION FUNCTION

An orbit of a particle that carries out a random walk
can be a mixture of different small pieces of almost regu-
lar motion. Any flight can be interpreted as a long piece
of almost regular motion. The flights always exist in typi-
cal situations of dynamical chaos, but their measure is
different for cases of anomalous or normal diffusion.
Such a property may be visualized in the form of a parti-
cle position dependence on #: x =x(t), y =y (¢). We set
x(t)=x,(t)—x _(t), where x . (¢) and x_(¢) are both
continuous and

x(t), x>0
0, x<0,

0, x=0
x_(1)=

—x(), ©-b

x4 (0= x <0 .

Equations (9.1) represent only monotonic changes of x (#)
in increasing (x ;) or decreasing (x _) directions. This
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FIG. 11. Orbits represented in terms of functions of positive
variation. (a) and (c) show fractal properties of single direction
particle propagation for the anomalous case €=2.3 and (c) and
(d) show the same for the normal case e=2.9. Solid curves cor-
respond to x 7, y* and dashed curves correspond to x ~, y .
The orbits are displayed in three pieces to show details better.

separation, usually carried out for functions of bounded
variation, is a useful way to visualize a function with a
great deal of oscillation, such as is manifest in Figs.
2(a)-2(c). The corresponding plots are given in Fig. 11
for the first 1000 steps. Each picture has three consecu-
tive pieces of the initial part of an orbit. They represent
x T (t) for the normal case [(a) and (c)] and anomalous one
[(6) and (d)]. A flight in x (¢) has corresponding stagna-
tion in y(¢) and vice versa. The flights are short and
there is almost no serious difference between cases of
€=2.3 and 2.9. The difference comes from the long-time
observation and the long flights. Nevertheless, the phe-
nomena of flights, even when they are short, creates a
Poisson-like distribution function near the origin (see
Figs. 4 and 5). We can relate this to the Poisson distribu-
tion of the Poincaré recurrence times which is also
Poisson-like for not too large values of the recurrence
times [23,45]. '
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